1 | """
|
2 | control_flow_pass.py - AST pass that builds a control flow graph.
|
3 | """
|
4 | import collections
|
5 | from typing import overload, Union, Optional, Dict
|
6 |
|
7 | import mypy
|
8 | from mypy.nodes import (Block, Expression, Statement, ExpressionStmt, StrExpr,
|
9 | CallExpr, FuncDef, IfStmt, NameExpr, MemberExpr,
|
10 | IndexExpr, TupleExpr, IntExpr)
|
11 |
|
12 | from mypy.types import CallableType, Instance, Type, UnionType, NoneTyp, TupleType
|
13 |
|
14 | from mycpp.crash import catch_errors
|
15 | from mycpp.util import join_name, split_py_name
|
16 | from mycpp.visitor import SimpleVisitor, T
|
17 | from mycpp import util
|
18 | from mycpp import pass_state
|
19 |
|
20 |
|
21 | class UnsupportedException(Exception):
|
22 | pass
|
23 |
|
24 |
|
25 | def GetObjectTypeName(t: Type) -> util.SymbolPath:
|
26 | if isinstance(t, Instance):
|
27 | return split_py_name(t.type.fullname)
|
28 |
|
29 | elif isinstance(t, UnionType):
|
30 | assert len(t.items) == 2
|
31 | if isinstance(t.items[0], NoneTyp):
|
32 | return GetObjectTypeName(t.items[1])
|
33 |
|
34 | return GetObjectTypeName(t.items[0])
|
35 |
|
36 | assert False, t
|
37 |
|
38 |
|
39 | class Build(SimpleVisitor):
|
40 |
|
41 | def __init__(self, types: Dict[Expression, Type], virtual, local_vars,
|
42 | dot_exprs):
|
43 |
|
44 | self.types = types
|
45 | self.cfgs = collections.defaultdict(pass_state.ControlFlowGraph)
|
46 | self.current_statement_id = None
|
47 | self.current_class_name = None
|
48 | self.current_func_node = None
|
49 | self.loop_stack = []
|
50 | self.virtual = virtual
|
51 | self.local_vars = local_vars
|
52 | self.dot_exprs = dot_exprs
|
53 | self.heap_counter = 0
|
54 | self.callees = {} # statement object -> SymbolPath of the callee
|
55 | self.current_lval = None
|
56 |
|
57 | def current_cfg(self):
|
58 | if not self.current_func_node:
|
59 | return None
|
60 |
|
61 | return self.cfgs[split_py_name(self.current_func_node.fullname)]
|
62 |
|
63 | def resolve_callee(self, o: CallExpr) -> Optional[util.SymbolPath]:
|
64 | """
|
65 | Returns the fully qualified name of the callee in the given call
|
66 | expression.
|
67 |
|
68 | Member functions are prefixed by the names of the classes that contain
|
69 | them. For example, the name of the callee in the last statement of the
|
70 | snippet below is `module.SomeObject.Foo`.
|
71 |
|
72 | x = module.SomeObject()
|
73 | x.Foo()
|
74 |
|
75 | Free-functions defined in the local module are referred to by their
|
76 | normal fully qualified names. The function `foo` in a module called
|
77 | `moduleA` would is named `moduleA.foo`. Calls to free-functions defined
|
78 | in imported modules are named the same way.
|
79 | """
|
80 |
|
81 | if isinstance(o.callee, NameExpr):
|
82 | return split_py_name(o.callee.fullname)
|
83 |
|
84 | elif isinstance(o.callee, MemberExpr):
|
85 | if isinstance(o.callee.expr, NameExpr):
|
86 | is_module = isinstance(self.dot_exprs.get(o.callee),
|
87 | pass_state.ModuleMember)
|
88 | if is_module:
|
89 | return split_py_name(
|
90 | o.callee.expr.fullname) + (o.callee.name, )
|
91 |
|
92 | elif o.callee.expr.name == 'self':
|
93 | assert self.current_class_name
|
94 | return self.current_class_name + (o.callee.name, )
|
95 |
|
96 | else:
|
97 | local_type = None
|
98 | for name, t in self.local_vars.get(self.current_func_node,
|
99 | []):
|
100 | if name == o.callee.expr.name:
|
101 | local_type = t
|
102 | break
|
103 |
|
104 | if local_type:
|
105 | if isinstance(local_type, str):
|
106 | return split_py_name(local_type) + (
|
107 | o.callee.name, )
|
108 |
|
109 | elif isinstance(local_type, Instance):
|
110 | return split_py_name(
|
111 | local_type.type.fullname) + (o.callee.name, )
|
112 |
|
113 | elif isinstance(local_type, UnionType):
|
114 | assert len(local_type.items) == 2
|
115 | return split_py_name(
|
116 | local_type.items[0].type.fullname) + (
|
117 | o.callee.expr.name, )
|
118 |
|
119 | else:
|
120 | assert not isinstance(local_type, CallableType)
|
121 | # primitive type or string. don't care.
|
122 | return None
|
123 |
|
124 | else:
|
125 | # context or exception handler. probably safe to ignore.
|
126 | return None
|
127 |
|
128 | else:
|
129 | t = self.types.get(o.callee.expr)
|
130 | if isinstance(t, Instance):
|
131 | return split_py_name(t.type.fullname) + (o.callee.name, )
|
132 |
|
133 | elif isinstance(t, UnionType):
|
134 | assert len(t.items) == 2
|
135 | return split_py_name(
|
136 | t.items[0].type.fullname) + (o.callee.name, )
|
137 |
|
138 | elif o.callee.expr and getattr(o.callee.expr, 'fullname',
|
139 | None):
|
140 | return split_py_name(
|
141 | o.callee.expr.fullname) + (o.callee.name, )
|
142 |
|
143 | else:
|
144 | # constructors of things that we don't care about.
|
145 | return None
|
146 |
|
147 | # Don't currently get here
|
148 | raise AssertionError()
|
149 |
|
150 | def get_ref_name(self, expr: Expression) -> Optional[util.SymbolPath]:
|
151 | """
|
152 | To do dataflow analysis we need to track changes to objects, which
|
153 | requires naming them. This function returns the name of the object
|
154 | referred to by the given expression. If the expression doesn't refer to
|
155 | an object or variable it returns None.
|
156 |
|
157 | Objects are named slightly differently than they appear in the source
|
158 | code.
|
159 |
|
160 | Objects referenced by local variables are referred to by the name of the
|
161 | local. For example, the name of the object in both statements below is
|
162 | `x`.
|
163 |
|
164 | x = module.SomeObject()
|
165 | x = None
|
166 |
|
167 | Member expressions are named after the parent object's type. For
|
168 | example, the names of the objects in the member assignment statements
|
169 | below are both `module.SomeObject.member_a`. This makes it possible to
|
170 | track data flow across object members without having to track individual
|
171 | heap objects, which would increase the search space for analyses and
|
172 | slow things down.
|
173 |
|
174 | x = module.SomeObject()
|
175 | y = module.SomeObject()
|
176 | x.member_a = 'foo'
|
177 | y.member_a = 'bar'
|
178 |
|
179 | Index expressions are named after their bases, for the same reasons as
|
180 | member expressions. The coarse-grained precision should lead to an
|
181 | over-approximation of where objects are in use, but should not miss any
|
182 | references. This should be fine for our purposes. In the snippet below
|
183 | the last two assignments are named `x` and `module.SomeObject.a_list`.
|
184 |
|
185 | x = [None] # list[Thing]
|
186 | y = module.SomeObject()
|
187 | x[0] = Thing()
|
188 | y.a_list[1] = Blah()
|
189 |
|
190 | Index expressions over tuples are treated differently, though. Tuples
|
191 | have a fixed size, tend to be small, and their elements have distinct
|
192 | types. So, each element can be (and probably needs to be) individually
|
193 | named. In the snippet below, the name of the RHS in the second
|
194 | assignment is `t.0`.
|
195 |
|
196 | t = (1, 2, 3, 4)
|
197 | x = t[0]
|
198 |
|
199 | The examples above all deal with assignments, but these rules apply to
|
200 | any expression that uses an object or variable.
|
201 | """
|
202 | if isinstance(expr,
|
203 | NameExpr) and expr.name not in {'True', 'False', 'None'}:
|
204 | return (expr.name, )
|
205 |
|
206 | elif isinstance(expr, MemberExpr):
|
207 | dot_expr = self.dot_exprs[expr]
|
208 | if isinstance(dot_expr, pass_state.ModuleMember):
|
209 | return dot_expr.module_path + (dot_expr.member, )
|
210 |
|
211 | elif isinstance(dot_expr, pass_state.HeapObjectMember):
|
212 | obj_name = self.get_ref_name(dot_expr.object_expr)
|
213 | if obj_name:
|
214 | # XXX: add a new case like pass_state.ExpressionMember for
|
215 | # cases when the LHS of . isn't a reference (e.g.
|
216 | # builtin/assign_osh.py:54)
|
217 | return obj_name + (dot_expr.member, )
|
218 |
|
219 | elif isinstance(dot_expr, pass_state.StackObjectMember):
|
220 | return self.get_ref_name(
|
221 | dot_expr.object_expr) + (dot_expr.member, )
|
222 |
|
223 | elif isinstance(expr, IndexExpr):
|
224 | if isinstance(self.types[expr.base], TupleType):
|
225 | assert isinstance(expr.index, IntExpr)
|
226 | return self.get_ref_name(expr.base) + (str(expr.index.value), )
|
227 |
|
228 | return self.get_ref_name(expr.base)
|
229 |
|
230 | return None
|
231 |
|
232 | #
|
233 | # COPIED from IRBuilder
|
234 | #
|
235 |
|
236 | @overload
|
237 | def accept(self, node: Expression) -> T:
|
238 | ...
|
239 |
|
240 | @overload
|
241 | def accept(self, node: Statement) -> None:
|
242 | ...
|
243 |
|
244 | def accept(self, node: Union[Statement, Expression]) -> Optional[T]:
|
245 | with catch_errors(self.module_path, node.line):
|
246 | if isinstance(node, Expression):
|
247 | try:
|
248 | res = node.accept(self)
|
249 | #res = self.coerce(res, self.node_type(node), node.line)
|
250 |
|
251 | # If we hit an error during compilation, we want to
|
252 | # keep trying, so we can produce more error
|
253 | # messages. Generate a temp of the right type to keep
|
254 | # from causing more downstream trouble.
|
255 | except UnsupportedException:
|
256 | res = self.alloc_temp(self.node_type(node))
|
257 | return res
|
258 | else:
|
259 | try:
|
260 | cfg = self.current_cfg()
|
261 | # Most statements have empty visitors because they don't
|
262 | # require any special logic. Create statements for them
|
263 | # here. Don't create statements from blocks to avoid
|
264 | # stuttering.
|
265 | if cfg and not isinstance(node, Block):
|
266 | self.current_statement_id = cfg.AddStatement()
|
267 |
|
268 | node.accept(self)
|
269 | except UnsupportedException:
|
270 | pass
|
271 | return None
|
272 |
|
273 | # Not in superclasses:
|
274 |
|
275 | def visit_mypy_file(self, o: 'mypy.nodes.MypyFile') -> T:
|
276 | if util.ShouldSkipPyFile(o):
|
277 | return
|
278 |
|
279 | self.module_path = o.path
|
280 |
|
281 | for node in o.defs:
|
282 | # skip module docstring
|
283 | if isinstance(node, ExpressionStmt) and isinstance(
|
284 | node.expr, StrExpr):
|
285 | continue
|
286 | self.accept(node)
|
287 |
|
288 | # Statements
|
289 |
|
290 | def visit_for_stmt(self, o: 'mypy.nodes.ForStmt') -> T:
|
291 | cfg = self.current_cfg()
|
292 | with pass_state.CfgLoopContext(
|
293 | cfg, entry=self.current_statement_id) as loop:
|
294 | self.accept(o.expr)
|
295 | self.loop_stack.append(loop)
|
296 | self.accept(o.body)
|
297 | self.loop_stack.pop()
|
298 |
|
299 | def _handle_switch(self, expr, o, cfg):
|
300 | assert len(o.body.body) == 1, o.body.body
|
301 | if_node = o.body.body[0]
|
302 | assert isinstance(if_node, IfStmt), if_node
|
303 | cases = []
|
304 | default_block = util._collect_cases(self.module_path, if_node, cases)
|
305 | with pass_state.CfgBranchContext(
|
306 | cfg, self.current_statement_id) as branch_ctx:
|
307 | for expr, body in cases:
|
308 | self.accept(expr)
|
309 | assert expr is not None, expr
|
310 | with branch_ctx.AddBranch():
|
311 | self.accept(body)
|
312 |
|
313 | if default_block:
|
314 | with branch_ctx.AddBranch():
|
315 | self.accept(default_block)
|
316 |
|
317 | def visit_with_stmt(self, o: 'mypy.nodes.WithStmt') -> T:
|
318 | cfg = self.current_cfg()
|
319 | assert len(o.expr) == 1, o.expr
|
320 | expr = o.expr[0]
|
321 | assert isinstance(expr, CallExpr), expr
|
322 | self.accept(expr)
|
323 |
|
324 | callee_name = expr.callee.name
|
325 | if callee_name == 'switch':
|
326 | self._handle_switch(expr, o, cfg)
|
327 | elif callee_name == 'str_switch':
|
328 | self._handle_switch(expr, o, cfg)
|
329 | elif callee_name == 'tagswitch':
|
330 | self._handle_switch(expr, o, cfg)
|
331 | else:
|
332 | with pass_state.CfgBlockContext(cfg, self.current_statement_id):
|
333 | self.accept(o.body)
|
334 |
|
335 | def visit_func_def(self, o: 'mypy.nodes.FuncDef') -> T:
|
336 | if o.name == '__repr__': # Don't translate
|
337 | return
|
338 |
|
339 | # For virtual methods, pretend that the method on the base class calls
|
340 | # the same method on every subclass. This way call sites using the
|
341 | # abstract base class will over-approximate the set of call paths they
|
342 | # can take when checking if they can reach MaybeCollect().
|
343 | if self.current_class_name and self.virtual.IsVirtual(
|
344 | self.current_class_name, o.name):
|
345 | key = (self.current_class_name, o.name)
|
346 | base = self.virtual.virtuals[key]
|
347 | if base:
|
348 | sub = join_name(self.current_class_name + (o.name, ),
|
349 | delim='.')
|
350 | base_key = base[0] + (base[1], )
|
351 | cfg = self.cfgs[base_key]
|
352 | cfg.AddFact(0, pass_state.FunctionCall(sub))
|
353 |
|
354 | self.current_func_node = o
|
355 | cfg = self.current_cfg()
|
356 | for arg in o.arguments:
|
357 | cfg.AddFact(0,
|
358 | pass_state.Definition((arg.variable.name, ), '$Empty'))
|
359 |
|
360 | self.accept(o.body)
|
361 | self.current_func_node = None
|
362 | self.current_statement_id = None
|
363 |
|
364 | def visit_class_def(self, o: 'mypy.nodes.ClassDef') -> T:
|
365 | self.current_class_name = split_py_name(o.fullname)
|
366 | for stmt in o.defs.body:
|
367 | # Ignore things that look like docstrings
|
368 | if (isinstance(stmt, ExpressionStmt) and
|
369 | isinstance(stmt.expr, StrExpr)):
|
370 | continue
|
371 |
|
372 | if isinstance(stmt, FuncDef) and stmt.name == '__repr__':
|
373 | continue
|
374 |
|
375 | self.accept(stmt)
|
376 |
|
377 | self.current_class_name = None
|
378 |
|
379 | def visit_while_stmt(self, o: 'mypy.nodes.WhileStmt') -> T:
|
380 | cfg = self.current_cfg()
|
381 | with pass_state.CfgLoopContext(
|
382 | cfg, entry=self.current_statement_id) as loop:
|
383 | self.accept(o.expr)
|
384 | self.loop_stack.append(loop)
|
385 | self.accept(o.body)
|
386 | self.loop_stack.pop()
|
387 |
|
388 | def visit_return_stmt(self, o: 'mypy.nodes.ReturnStmt') -> T:
|
389 | cfg = self.current_cfg()
|
390 | if cfg:
|
391 | cfg.AddDeadend(self.current_statement_id)
|
392 |
|
393 | if o.expr:
|
394 | self.accept(o.expr)
|
395 |
|
396 | def visit_if_stmt(self, o: 'mypy.nodes.IfStmt') -> T:
|
397 | cfg = self.current_cfg()
|
398 |
|
399 | if util.ShouldVisitIfExpr(o):
|
400 | for expr in o.expr:
|
401 | self.accept(expr)
|
402 |
|
403 | with pass_state.CfgBranchContext(
|
404 | cfg, self.current_statement_id) as branch_ctx:
|
405 | if util.ShouldVisitIfBody(o):
|
406 | with branch_ctx.AddBranch():
|
407 | for node in o.body:
|
408 | self.accept(node)
|
409 |
|
410 | if util.ShouldVisitElseBody(o):
|
411 | with branch_ctx.AddBranch():
|
412 | self.accept(o.else_body)
|
413 |
|
414 | def visit_break_stmt(self, o: 'mypy.nodes.BreakStmt') -> T:
|
415 | if len(self.loop_stack):
|
416 | self.loop_stack[-1].AddBreak(self.current_statement_id)
|
417 |
|
418 | def visit_continue_stmt(self, o: 'mypy.nodes.ContinueStmt') -> T:
|
419 | if len(self.loop_stack):
|
420 | self.loop_stack[-1].AddContinue(self.current_statement_id)
|
421 |
|
422 | def visit_raise_stmt(self, o: 'mypy.nodes.RaiseStmt') -> T:
|
423 | cfg = self.current_cfg()
|
424 | if cfg:
|
425 | cfg.AddDeadend(self.current_statement_id)
|
426 |
|
427 | if o.expr:
|
428 | self.accept(o.expr)
|
429 |
|
430 | def visit_try_stmt(self, o: 'mypy.nodes.TryStmt') -> T:
|
431 | cfg = self.current_cfg()
|
432 | with pass_state.CfgBranchContext(cfg,
|
433 | self.current_statement_id) as try_ctx:
|
434 | with try_ctx.AddBranch() as try_block:
|
435 | self.accept(o.body)
|
436 |
|
437 | for t, v, handler in zip(o.types, o.vars, o.handlers):
|
438 | with try_ctx.AddBranch(try_block.exit):
|
439 | self.accept(handler)
|
440 |
|
441 | def visit_assignment_stmt(self, o: 'mypy.nodes.AssignmentStmt') -> T:
|
442 | cfg = self.current_cfg()
|
443 | if cfg:
|
444 | assert len(o.lvalues) == 1
|
445 | lval = o.lvalues[0]
|
446 | lval_names = []
|
447 | if isinstance(lval, TupleExpr):
|
448 | lval_names.extend(
|
449 | [self.get_ref_name(item) for item in lval.items])
|
450 |
|
451 | else:
|
452 | lval_names.append(self.get_ref_name(lval))
|
453 |
|
454 | assert lval_names, o
|
455 |
|
456 | rval_type = self.types[o.rvalue]
|
457 | rval_names = []
|
458 | if isinstance(o.rvalue, CallExpr):
|
459 | # The RHS is either an object constructor or something that
|
460 | # returns a primitive type (e.g. Tuple[int, int] or str).
|
461 | # XXX: When we add inter-procedural analysis we should treat
|
462 | # these not as definitions but as some new kind of assignment.
|
463 | rval_names = [None for _ in lval_names]
|
464 |
|
465 | elif isinstance(o.rvalue, TupleExpr) and len(lval_names) == 1:
|
466 | # We're constructing a tuple. Since tuples have have a fixed
|
467 | # (and usually small) size, we can name each of the
|
468 | # elements.
|
469 | base = lval_names[0]
|
470 | lval_names = [
|
471 | base + (str(i), ) for i in range(len(o.rvalue.items))
|
472 | ]
|
473 | rval_names = [
|
474 | self.get_ref_name(item) for item in o.rvalue.items
|
475 | ]
|
476 |
|
477 | elif isinstance(rval_type, TupleType):
|
478 | # We're unpacking a tuple. Like the tuple construction case,
|
479 | # give each element a name.
|
480 | rval_name = self.get_ref_name(o.rvalue)
|
481 | assert rval_name, o.rvalue
|
482 | rval_names = [
|
483 | rval_name + (str(i), ) for i in range(len(lval_names))
|
484 | ]
|
485 |
|
486 | else:
|
487 | rval_names = [self.get_ref_name(o.rvalue)]
|
488 |
|
489 | assert len(rval_names) == len(lval_names)
|
490 |
|
491 | for lhs, rhs in zip(lval_names, rval_names):
|
492 | assert lhs, lval
|
493 | if rhs:
|
494 | # In this case rhe RHS is another variable. Record the
|
495 | # assignment so we can keep track of aliases.
|
496 | cfg.AddFact(self.current_statement_id,
|
497 | pass_state.Assignment(lhs, rhs))
|
498 | else:
|
499 | # In this case the RHS is either some kind of literal (e.g.
|
500 | # [] or 'foo') or a call to an object constructor. Mark this
|
501 | # statement as an (re-)definition of a variable.
|
502 | cfg.AddFact(
|
503 | self.current_statement_id,
|
504 | pass_state.Definition(
|
505 | lhs, '$HeapObject(h{})'.format(self.heap_counter)),
|
506 | )
|
507 | self.heap_counter += 1
|
508 |
|
509 | for lval in o.lvalues:
|
510 | self.current_lval = lval
|
511 | self.accept(lval)
|
512 | self.current_lval = None
|
513 |
|
514 | self.accept(o.rvalue)
|
515 |
|
516 | # Expressions
|
517 |
|
518 | def visit_member_expr(self, o: 'mypy.nodes.MemberExpr') -> T:
|
519 | self.accept(o.expr)
|
520 | cfg = self.current_cfg()
|
521 | if (cfg and
|
522 | not isinstance(self.dot_exprs[o], pass_state.ModuleMember) and
|
523 | o != self.current_lval):
|
524 | ref = self.get_ref_name(o)
|
525 | if ref:
|
526 | cfg.AddFact(self.current_statement_id, pass_state.Use(ref))
|
527 |
|
528 | def visit_name_expr(self, o: 'mypy.nodes.NameExpr') -> T:
|
529 | cfg = self.current_cfg()
|
530 | if cfg and o != self.current_lval:
|
531 | is_local = False
|
532 | for name, t in self.local_vars.get(self.current_func_node, []):
|
533 | if name == o.name:
|
534 | is_local = True
|
535 | break
|
536 |
|
537 | ref = self.get_ref_name(o)
|
538 | if ref and is_local:
|
539 | cfg.AddFact(self.current_statement_id, pass_state.Use(ref))
|
540 |
|
541 | def visit_call_expr(self, o: 'mypy.nodes.CallExpr') -> T:
|
542 | cfg = self.current_cfg()
|
543 | if self.current_func_node:
|
544 | full_callee = self.resolve_callee(o)
|
545 | if full_callee:
|
546 | self.callees[o] = full_callee
|
547 | cfg.AddFact(
|
548 | self.current_statement_id,
|
549 | pass_state.FunctionCall(join_name(full_callee, delim='.')))
|
550 |
|
551 | for i, arg in enumerate(o.args):
|
552 | arg_ref = self.get_ref_name(arg)
|
553 | if arg_ref:
|
554 | cfg.AddFact(self.current_statement_id,
|
555 | pass_state.Bind(arg_ref, full_callee, i))
|
556 |
|
557 | self.accept(o.callee)
|
558 | for arg in o.args:
|
559 | self.accept(arg)
|