1 | #ifndef MYCPP_GC_LIST_H
|
2 | #define MYCPP_GC_LIST_H
|
3 |
|
4 | #include <string.h> // memcpy
|
5 |
|
6 | #include <algorithm> // sort() is templated
|
7 |
|
8 | #include "mycpp/common.h" // DCHECK
|
9 | #include "mycpp/comparators.h"
|
10 | #include "mycpp/gc_alloc.h" // Alloc
|
11 | #include "mycpp/gc_builtins.h" // ValueError
|
12 | #include "mycpp/gc_mops.h" // BigInt
|
13 | #include "mycpp/gc_slab.h"
|
14 |
|
15 | // GlobalList is layout-compatible with List (unit tests assert this), and it
|
16 | // can be a true C global (incurs zero startup time)
|
17 |
|
18 | template <typename T, int N>
|
19 | class GlobalList {
|
20 | public:
|
21 | int len_;
|
22 | int capacity_;
|
23 | GlobalSlab<T, N>* slab_;
|
24 | };
|
25 |
|
26 | #define GLOBAL_LIST(name, T, N, array) \
|
27 | GcGlobal<GlobalSlab<T, N>> _slab_##name = {ObjHeader::Global(TypeTag::Slab), \
|
28 | {.items_ = array}}; \
|
29 | GcGlobal<GlobalList<T, N>> _list_##name = { \
|
30 | ObjHeader::Global(TypeTag::List), \
|
31 | {.len_ = N, .capacity_ = N, .slab_ = &_slab_##name.obj}}; \
|
32 | List<T>* name = reinterpret_cast<List<T>*>(&_list_##name.obj);
|
33 |
|
34 | template <typename T>
|
35 | class List {
|
36 | public:
|
37 | List() : len_(0), capacity_(0), slab_(nullptr) {
|
38 | }
|
39 |
|
40 | // Implements L[i]
|
41 | T at(int i);
|
42 |
|
43 | // returns index of the element
|
44 | int index(T element);
|
45 |
|
46 | // Implements L[i] = item
|
47 | void set(int i, T item);
|
48 |
|
49 | // L[begin:]
|
50 | List* slice(int begin);
|
51 |
|
52 | // L[begin:end]
|
53 | List* slice(int begin, int end);
|
54 |
|
55 | // Should we have a separate API that doesn't return it?
|
56 | // https://stackoverflow.com/questions/12600330/pop-back-return-value
|
57 | T pop();
|
58 |
|
59 | // Used in osh/word_parse.py to remove from front
|
60 | T pop(int i);
|
61 |
|
62 | // Remove the first occourence of x from the list.
|
63 | void remove(T x);
|
64 |
|
65 | void clear();
|
66 |
|
67 | // Used in osh/string_ops.py
|
68 | void reverse();
|
69 |
|
70 | // Templated function
|
71 | void sort();
|
72 |
|
73 | // Ensure that there's space for at LEAST this many items
|
74 | void reserve(int num_desired);
|
75 |
|
76 | // Append a single element to this list.
|
77 | void append(T item);
|
78 |
|
79 | // Extend this list with multiple elements.
|
80 | void extend(List<T>* other);
|
81 |
|
82 | static constexpr ObjHeader obj_header() {
|
83 | return ObjHeader::ClassFixed(field_mask(), sizeof(List<T>));
|
84 | }
|
85 |
|
86 | int len_; // number of entries
|
87 | int capacity_; // max entries before resizing
|
88 |
|
89 | // The container may be resized, so this field isn't in-line.
|
90 | Slab<T>* slab_;
|
91 |
|
92 | // A list has one Slab pointer which we need to follow.
|
93 | static constexpr uint32_t field_mask() {
|
94 | return maskbit(offsetof(List, slab_));
|
95 | }
|
96 |
|
97 | DISALLOW_COPY_AND_ASSIGN(List)
|
98 |
|
99 | static_assert(sizeof(ObjHeader) % sizeof(T) == 0,
|
100 | "ObjHeader size should be multiple of item size");
|
101 | static constexpr int kHeaderFudge = sizeof(ObjHeader) / sizeof(T);
|
102 |
|
103 | #if 0
|
104 | // 24-byte pool comes from very common List header, and Token
|
105 | static constexpr int kPoolBytes1 = 24 - sizeof(ObjHeader);
|
106 | static_assert(kPoolBytes1 % sizeof(T) == 0,
|
107 | "An integral number of items should fit in first pool");
|
108 | static constexpr int kNumItems1 = kPoolBytes1 / sizeof(T);
|
109 | #endif
|
110 |
|
111 | // Matches mark_sweep_heap.h
|
112 | static constexpr int kPoolBytes2 = 48 - sizeof(ObjHeader);
|
113 | static_assert(kPoolBytes2 % sizeof(T) == 0,
|
114 | "An integral number of items should fit in second pool");
|
115 | static constexpr int kNumItems2 = kPoolBytes2 / sizeof(T);
|
116 |
|
117 | #if 0
|
118 | static constexpr int kMinBytes2 = 128 - sizeof(ObjHeader);
|
119 | static_assert(kMinBytes2 % sizeof(T) == 0,
|
120 | "An integral number of items should fit");
|
121 | static constexpr int kMinItems2 = kMinBytes2 / sizeof(T);
|
122 | #endif
|
123 |
|
124 | // Given the number of items desired, return the number items we should
|
125 | // reserve room for, according to our growth policy.
|
126 | int HowManyItems(int num_desired) {
|
127 | // Using the 24-byte pool leads to too much GC of tiny slab objects! So
|
128 | // just use the larger 48 byte pool.
|
129 | #if 0
|
130 | if (num_desired <= kNumItems1) { // use full cell in pool 1
|
131 | return kNumItems1;
|
132 | }
|
133 | #endif
|
134 | if (num_desired <= kNumItems2) { // use full cell in pool 2
|
135 | return kNumItems2;
|
136 | }
|
137 | #if 0
|
138 | if (num_desired <= kMinItems2) { // 48 -> 128, not 48 -> 64
|
139 | return kMinItems2;
|
140 | }
|
141 | #endif
|
142 |
|
143 | // Make sure the total allocation is a power of 2. TODO: consider using
|
144 | // slightly less than power of 2, to account for malloc() headers, and
|
145 | // reduce fragmentation.
|
146 | // Example:
|
147 | // - ask for 11 integers
|
148 | // - round up 11+2 == 13 up to 16 items
|
149 | // - return 14 items
|
150 | // - 14 integers is 56 bytes, plus 8 byte GC header => 64 byte alloc.
|
151 | return RoundUp(num_desired + kHeaderFudge) - kHeaderFudge;
|
152 | }
|
153 | };
|
154 |
|
155 | // "Constructors" as free functions since we can't allocate within a
|
156 | // constructor. Allocation may cause garbage collection, which interferes with
|
157 | // placement new.
|
158 |
|
159 | // This is not really necessary, only syntactic sugar.
|
160 | template <typename T>
|
161 | List<T>* NewList() {
|
162 | return Alloc<List<T>>();
|
163 | }
|
164 |
|
165 | // Literal ['foo', 'bar']
|
166 | // This seems to allow better template argument type deduction than a
|
167 | // constructor.
|
168 | template <typename T>
|
169 | List<T>* NewList(std::initializer_list<T> init) {
|
170 | auto self = Alloc<List<T>>();
|
171 |
|
172 | int n = init.size();
|
173 | self->reserve(n);
|
174 |
|
175 | int i = 0;
|
176 | for (auto item : init) {
|
177 | self->slab_->items_[i] = item;
|
178 | ++i;
|
179 | }
|
180 | self->len_ = n;
|
181 | return self;
|
182 | }
|
183 |
|
184 | // ['foo'] * 3
|
185 | template <typename T>
|
186 | List<T>* NewList(T item, int times) {
|
187 | auto self = Alloc<List<T>>();
|
188 |
|
189 | self->reserve(times);
|
190 | self->len_ = times;
|
191 | for (int i = 0; i < times; ++i) {
|
192 | self->set(i, item);
|
193 | }
|
194 | return self;
|
195 | }
|
196 |
|
197 | template <typename T>
|
198 | void List<T>::append(T item) {
|
199 | reserve(len_ + 1);
|
200 | slab_->items_[len_] = item;
|
201 | ++len_;
|
202 | }
|
203 |
|
204 | template <typename T>
|
205 | int len(const List<T>* L) {
|
206 | return L->len_;
|
207 | }
|
208 |
|
209 | template <typename T>
|
210 | List<T>* list_repeat(T item, int times);
|
211 |
|
212 | template <typename T>
|
213 | inline bool list_contains(List<T>* haystack, T needle);
|
214 |
|
215 | template <typename K, typename V>
|
216 | class Dict; // forward decl
|
217 |
|
218 | template <typename V>
|
219 | List<BigStr*>* sorted(Dict<BigStr*, V>* d);
|
220 |
|
221 | template <typename T>
|
222 | List<T>* sorted(List<T>* l);
|
223 |
|
224 | // L[begin:]
|
225 | template <typename T>
|
226 | List<T>* List<T>::slice(int begin) {
|
227 | return slice(begin, len_);
|
228 | }
|
229 |
|
230 | // L[begin:end]
|
231 | template <typename T>
|
232 | List<T>* List<T>::slice(int begin, int end) {
|
233 | SLICE_ADJUST(begin, end, len_);
|
234 |
|
235 | DCHECK(0 <= begin && begin <= len_);
|
236 | DCHECK(0 <= end && end <= len_);
|
237 |
|
238 | int new_len = end - begin;
|
239 | DCHECK(0 <= new_len && new_len <= len_);
|
240 |
|
241 | List<T>* result = NewList<T>();
|
242 | result->reserve(new_len);
|
243 |
|
244 | // Faster than append() in a loop
|
245 | memcpy(result->slab_->items_, slab_->items_ + begin, new_len * sizeof(T));
|
246 | result->len_ = new_len;
|
247 |
|
248 | return result;
|
249 | }
|
250 |
|
251 | // Ensure that there's space for a number of items
|
252 | template <typename T>
|
253 | void List<T>::reserve(int num_desired) {
|
254 | // log("reserve capacity = %d, n = %d", capacity_, n);
|
255 |
|
256 | // Don't do anything if there's already enough space.
|
257 | if (capacity_ >= num_desired) {
|
258 | return;
|
259 | }
|
260 |
|
261 | // Slabs should be a total of 2^N bytes. kCapacityAdjust is the number of
|
262 | // items that the 8 byte header takes up: 1 for List<T*>, and 2 for
|
263 | // List<int>.
|
264 | //
|
265 | // Example: the user reserves space for 3 integers. The minimum number of
|
266 | // items would be 5, which is rounded up to 8. Subtract 2 again, giving 6,
|
267 | // which leads to 8 + 6*4 = 32 byte Slab.
|
268 |
|
269 | capacity_ = HowManyItems(num_desired);
|
270 | auto new_slab = NewSlab<T>(capacity_);
|
271 |
|
272 | if (len_ > 0) {
|
273 | // log("Copying %d bytes", len_ * sizeof(T));
|
274 | memcpy(new_slab->items_, slab_->items_, len_ * sizeof(T));
|
275 | }
|
276 | slab_ = new_slab;
|
277 | }
|
278 |
|
279 | // Implements L[i] = item
|
280 | template <typename T>
|
281 | void List<T>::set(int i, T item) {
|
282 | if (i < 0) {
|
283 | i = len_ + i;
|
284 | }
|
285 |
|
286 | if (0 > i || i >= len_) {
|
287 | throw Alloc<IndexError>();
|
288 | }
|
289 |
|
290 | slab_->items_[i] = item;
|
291 | }
|
292 |
|
293 | // Implements L[i]
|
294 | template <typename T>
|
295 | T List<T>::at(int i) {
|
296 | if (i < 0) {
|
297 | i = len_ + i;
|
298 | }
|
299 |
|
300 | if (0 > i || i >= len_) {
|
301 | throw Alloc<IndexError>();
|
302 | }
|
303 | return slab_->items_[i];
|
304 | }
|
305 |
|
306 | // L.index(i) -- Python method
|
307 | template <typename T>
|
308 | int List<T>::index(T value) {
|
309 | int element_count = len(this);
|
310 | for (int i = 0; i < element_count; i++) {
|
311 | if (items_equal(slab_->items_[i], value)) {
|
312 | return i;
|
313 | }
|
314 | }
|
315 | throw Alloc<ValueError>();
|
316 | }
|
317 |
|
318 | // Should we have a separate API that doesn't return it?
|
319 | // https://stackoverflow.com/questions/12600330/pop-back-return-value
|
320 | template <typename T>
|
321 | T List<T>::pop() {
|
322 | if (len_ == 0) {
|
323 | throw Alloc<IndexError>();
|
324 | }
|
325 | len_--;
|
326 | T result = slab_->items_[len_];
|
327 | slab_->items_[len_] = 0; // zero for GC scan
|
328 | return result;
|
329 | }
|
330 |
|
331 | // Used in osh/word_parse.py to remove from front
|
332 | template <typename T>
|
333 | T List<T>::pop(int i) {
|
334 | if (len_ < i) {
|
335 | throw Alloc<IndexError>();
|
336 | }
|
337 |
|
338 | T result = at(i);
|
339 | len_--;
|
340 |
|
341 | // Shift everything by one
|
342 | memmove(slab_->items_ + i, slab_->items_ + (i + 1), (len_ - i) * sizeof(T));
|
343 |
|
344 | /*
|
345 | for (int j = 0; j < len_; j++) {
|
346 | slab_->items_[j] = slab_->items_[j+1];
|
347 | }
|
348 | */
|
349 |
|
350 | slab_->items_[len_] = 0; // zero for GC scan
|
351 | return result;
|
352 | }
|
353 |
|
354 | template <typename T>
|
355 | void List<T>::remove(T x) {
|
356 | int idx = this->index(x);
|
357 | this->pop(idx); // unused
|
358 | }
|
359 |
|
360 | template <typename T>
|
361 | void List<T>::clear() {
|
362 | if (slab_) {
|
363 | memset(slab_->items_, 0, len_ * sizeof(T)); // zero for GC scan
|
364 | }
|
365 | len_ = 0;
|
366 | }
|
367 |
|
368 | // Used in osh/string_ops.py
|
369 | template <typename T>
|
370 | void List<T>::reverse() {
|
371 | for (int i = 0; i < len_ / 2; ++i) {
|
372 | // log("swapping %d and %d", i, n-i);
|
373 | T tmp = slab_->items_[i];
|
374 | int j = len_ - 1 - i;
|
375 | slab_->items_[i] = slab_->items_[j];
|
376 | slab_->items_[j] = tmp;
|
377 | }
|
378 | }
|
379 |
|
380 | // Extend this list with multiple elements.
|
381 | template <typename T>
|
382 | void List<T>::extend(List<T>* other) {
|
383 | int n = other->len_;
|
384 | int new_len = len_ + n;
|
385 | reserve(new_len);
|
386 |
|
387 | for (int i = 0; i < n; ++i) {
|
388 | slab_->items_[len_ + i] = other->slab_->items_[i];
|
389 | }
|
390 | len_ = new_len;
|
391 | }
|
392 |
|
393 | inline bool CompareBigStr(BigStr* a, BigStr* b) {
|
394 | return mylib::str_cmp(a, b) < 0;
|
395 | }
|
396 |
|
397 | template <>
|
398 | inline void List<BigStr*>::sort() {
|
399 | std::sort(slab_->items_, slab_->items_ + len_, CompareBigStr);
|
400 | }
|
401 |
|
402 | inline bool CompareBigInt(mops::BigInt a, mops::BigInt b) {
|
403 | return a < b;
|
404 | }
|
405 |
|
406 | template <>
|
407 | inline void List<mops::BigInt>::sort() {
|
408 | std::sort(slab_->items_, slab_->items_ + len_, CompareBigInt);
|
409 | }
|
410 |
|
411 | // TODO: mycpp can just generate the constructor instead?
|
412 | // e.g. [None] * 3
|
413 | template <typename T>
|
414 | List<T>* list_repeat(T item, int times) {
|
415 | return NewList<T>(item, times);
|
416 | }
|
417 |
|
418 | // e.g. 'a' in ['a', 'b', 'c']
|
419 | template <typename T>
|
420 | inline bool list_contains(List<T>* haystack, T needle) {
|
421 | int n = len(haystack);
|
422 | for (int i = 0; i < n; ++i) {
|
423 | if (items_equal(haystack->at(i), needle)) {
|
424 | return true;
|
425 | }
|
426 | }
|
427 | return false;
|
428 | }
|
429 |
|
430 | template <typename V>
|
431 | List<BigStr*>* sorted(Dict<BigStr*, V>* d) {
|
432 | auto keys = d->keys();
|
433 | keys->sort();
|
434 | return keys;
|
435 | }
|
436 |
|
437 | template <typename T>
|
438 | List<T>* sorted(List<T>* l) {
|
439 | auto ret = list(l);
|
440 | ret->sort();
|
441 | return ret;
|
442 | }
|
443 |
|
444 | // list(L) copies the list
|
445 | template <typename T>
|
446 | List<T>* list(List<T>* other) {
|
447 | auto result = NewList<T>();
|
448 | result->extend(other);
|
449 | return result;
|
450 | }
|
451 |
|
452 | template <class T>
|
453 | class ListIter {
|
454 | public:
|
455 | explicit ListIter(List<T>* L) : L_(L), i_(0) {
|
456 | // Cheney only: L_ could be moved during iteration.
|
457 | // gHeap.PushRoot(reinterpret_cast<RawObject**>(&L_));
|
458 | }
|
459 |
|
460 | ~ListIter() {
|
461 | // gHeap.PopRoot();
|
462 | }
|
463 | void Next() {
|
464 | i_++;
|
465 | }
|
466 | bool Done() {
|
467 | // "unsigned size_t was a mistake"
|
468 | return i_ >= static_cast<int>(L_->len_);
|
469 | }
|
470 | T Value() {
|
471 | return L_->slab_->items_[i_];
|
472 | }
|
473 | T iterNext() {
|
474 | if (Done()) {
|
475 | throw Alloc<StopIteration>();
|
476 | }
|
477 | T ret = L_->slab_->items_[i_];
|
478 | Next();
|
479 | return ret;
|
480 | }
|
481 |
|
482 | // only for use with generators
|
483 | List<T>* GetList() {
|
484 | return L_;
|
485 | }
|
486 |
|
487 | private:
|
488 | List<T>* L_;
|
489 | int i_;
|
490 | };
|
491 |
|
492 | // list(it) returns the iterator's backing list
|
493 | template <typename T>
|
494 | List<T>* list(ListIter<T> it) {
|
495 | return list(it.GetList());
|
496 | }
|
497 |
|
498 | // TODO: Does using pointers rather than indices make this more efficient?
|
499 | template <class T>
|
500 | class ReverseListIter {
|
501 | public:
|
502 | explicit ReverseListIter(List<T>* L) : L_(L), i_(L_->len_ - 1) {
|
503 | }
|
504 | void Next() {
|
505 | i_--;
|
506 | }
|
507 | bool Done() {
|
508 | return i_ < 0;
|
509 | }
|
510 | T Value() {
|
511 | return L_->slab_->items_[i_];
|
512 | }
|
513 |
|
514 | private:
|
515 | List<T>* L_;
|
516 | int i_;
|
517 | };
|
518 |
|
519 | int max(List<int>* elems);
|
520 |
|
521 | #endif // MYCPP_GC_LIST_H
|